The troubleshooting and repair instructions are applicable to the following unit versions only

<table>
<thead>
<tr>
<th>Heater</th>
<th>Order no.</th>
<th>Heater</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDRONIC M8 Biodiesel</td>
<td>12 V 25 2470 05 00 00</td>
<td>HYDRONIC M12</td>
<td>12 V 25 2472 05 00 00</td>
</tr>
<tr>
<td></td>
<td>24 V 25 2471 05 00 00</td>
<td></td>
<td>24 V 25 2473 05 00 00</td>
</tr>
<tr>
<td>HYDRONIC M10</td>
<td>12 V 25 2434 05 00 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 V 25 2435 05 00 00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contents

This list of contents gives you precise information about the contents of the Troubleshooting and Repair Instructions.

If you are looking for a term, technical term or you would like an abbreviation explained, please use the relevant index at the end of the instructions, from page 54.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>• Contents .. 2 – 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Foreword .. 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Safety instructions for installation and repair 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Accident prevention .. 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Special text structure, presentation and picture symbols 4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Function</td>
<td>• Cutaway view ... 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Description of functions .. 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Control and safety devices ... 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Forced ADR / ADR99 shutdown .. 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Emergency stop (EMERGENCY OFF) .. 7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Product info.</td>
<td>• Technical data, heater .. 8 – 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Technical data, water pump .. 11</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Troubleshooting</td>
<td>• What to check first in case of faults ... 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Locking the control box .. 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cancel the control box lock ... 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Overview of testing equipment .. 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fault diagnosis using the diagnostic unit ... 14, 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fault diagnosis using the EDITH diagnostics tool 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fault diagnosis using the EasyStart R+ radio remote control and EasyStart T timer ... 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fault code table .. 18 – 20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Repair instructions</td>
<td>• Repair instructions ... 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Always observe the following safety instructions before working on the heater ... 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Special tool, AMP release tools .. 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Assembly drawing .. 22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Component parts / Notes on various components 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Preparatory work for all repairs .. 24</td>
<td></td>
</tr>
</tbody>
</table>
| | | • Repair step 1
| | |   Dismantle control box / blower unit and jacket 24 |
| | |   – Remove overheating and temperature sensor .. 24 |
| | |   – Remove water pump connector .. 25 |
| | |   – Remove side cover and jacket .. 25 |
| | |   – Remove electric motor cover .. 25 |
| | |   – Disconnect 14-pin connector at control box and release cables 26 |
| | |   – Remove flame sensor ... 27 |
| | |   – Dismantle combustion chamber ... 27 |
| | | • Repair step 2
| | |   Assemble control box / blower unit and jacket .. 28 |
| | |   – Install combustion chamber seal .. 28 |
| | |   – Install grommet .. 28 |
| | |   – Insert combustion chamber ... 28 |
| | |   – Install combustion chamber .. 29 |
| | |   – Lay sensor lead harness and leads for glow plugs 29 |
| | |   – Install flame sensor ... 30 |
| | |   – Connect flame sensor lead harness and electric motor leads 30 |
| | |   – Connect the glow plug leads .. 31 |
| | |   – Install electric motor cover .. 32 |
| | |   – Assemble control box / blower unit and jacket 32 |
| | |   – Lay water pump lead harness ... 33 |
| | |   – Install overheating and temperature sensor ... 33 |
| | |   – Install impeller cover ... 34 |
1 Introduction

Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Repair instructions</td>
<td>• Repair step 3 ..</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Remove / check glow plug ..</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Install glow plug ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Clean ignition air drillhole...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Repair step 4 ..</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Remove spark plug socket lining ..</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Install spark plug socket lining ..</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Repair step 5 ..</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Check overheating and temperature sensor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Repair step 6 ..</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Check flame sensor ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Repair step 7 ..</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Remove / attach water pump ..</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Measuring the fuel quantity ..</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Circuit diagrams</td>
<td>• Heater wiring...</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Notes on rewiring the 12-pin cable harness connector</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Circuit diagram: HYDRONIC M-II – 12 volt / 24 volt</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Parts list: HYDRONIC M-II – 12 volt / 24 volt</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Circuit diagram: HYDRONIC M-II – ADR – 12 volt / 24 volt</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Parts list: HYDRONIC M-II – ADR/ADR99 – 12 volt / 24 volt</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Parts list: EasyStart R+ / R / T and EasyStart T – ADR control units</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Circuit diagram, EasyStart R+ control units</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Circuit diagram, EasyStart R+ control units</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Circuit diagram, EasyStart T control units</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Circuit diagram, control units, EasyStart T – ADR</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>Service</td>
<td>• Certifications ..</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Disposal ..</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• EC Declaration of Conformity ..</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Representatives abroad ...</td>
<td>51, 53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• List of keywords ...</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• List of abbreviations ...</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Visit www.butlertechnik.com for more technical information and downloads.</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

Foreword

These Troubleshooting and Repair Instructions are applicable to the heaters listed on the title page, to the exclusion of all liability claims. Depending on the version or revised status of the heater, there may be differences between it and these troubleshooting and repair instructions. The user must check this before carrying out the repair work and, if necessary, take the differences into account.

Caution!
Safety instructions for installation and repair!

Improper installation or repair of Eberspächer heaters can cause a fire or result poisonous exhaust entering the inside of the vehicle. This can cause serious and even fatal risks.

The heater may only be installed according to the specifications in the technical documents or repaired using original spare parts by authorised and trained persons. Installation and repairs by unauthorised and untrained persons, repairs using non-original spare parts and without the technical documents required for installation and repair are dangerous and therefore are not permitted.

A repair may only be carried out in connection with the respective unit-related technical description, installation instructions, operating instructions and maintenance instructions. This document must be carefully read through before / during installation and repair and followed throughout. Particular attention is to be paid to the official regulations, the safety instructions and the general information.

Please note!
The relevant rules of sound engineering practice and any information provided by the vehicle manufacturer are to be observed during the installation and repair. Eberspächer does not accept any liability for defects and damage, which are due to installation or repair by unauthorised and untrained persons.

Compliance with the official regulations and the safety instructions is prerequisite for liability claims. Failure to comply with the official regulations and safety instructions leads to exclusion of any liability of the heater manufacturer.

Accident prevention

General accident prevention regulations and the corresponding workshop and operating safety instructions are to be observed.
Function

Cutaway view

1 Control box
2 Burner motor
3 Glow plug
4 Flame pipe
5 Overheating sensor
6 Heat exchanger
7 Water pump
8 Combustion chamber
9 Flame sensor

WE = Water inlet
WA = Water outlet
A = Exhaust
B = Fuel
V = Combustion air

Visit www.butlertechnik.com for more technical information and downloads.
Function

Description of functions

Switching on
On being switched on, the switch-on check is displayed in the control unit (EasyStart R+ / EasyStart T). The heater starts with a pre-set program, whereby the water pump and the combustion air blower start up first.
The metering pump starts pumping the fuel with a slight delay.
The glow phase of the glow plugs starts at the same time as discharge of the combustion air.
The glow plugs are switched off once a stable flame has formed in the combustion chamber.

Heating mode
The first time it is started up, the heater is run with the "POWER" stage until the water temperature exceeds the "POWER" / "HIGH" changeover threshold.

HYDRONIC M8 / M10
Then, depending on the heat requirement, the heater runs in the "HIGH – MEDIUM – LOW – OFF" stages only.
If the heating requirement in the "LOW" stage is so small that the cooling water temperature reaches 85 °C, the heater switches from "LOW" to "OFF".

HYDRONIC M12
Then, depending on the heat requirement, the heater runs in the "HIGH – MEDIUM 1 / MEDIUM 2 / MEDIUM 3 – LOW – OFF" stages only.
If the heating requirement in the "LOW" stage is so small that the cooling water temperature reaches 85 °C, the heater switches from "LOW" to "OFF".
The after-run follows with additional after-glowing of the glow plugs (as when the heater is switched off).
After the cooling water has cooled to approx. 70 °C the HYDRONIC M8 / M10 heater starts in "MEDIUM" stage, the HYDRONIC M12 heater in "MEDIUM 1" stage.
If the cooling water temperature reaches approx. 55 °C the temperature sensor switches on the vehicle fan.

Switching off
On being switched off the heater starts the after-run of 180 sec. During the after-run, after 90 seconds the first glow plug is switched on for 45 seconds, then the second glow plug is switched on until the end of the after-run.

Temperature drop
Temperature drop only becomes active while the vehicle is running and if the heater is switched on. The control stages are reached earlier; 58 °C instead of 68 °C and 45 °C instead of 63 °C. The heater’s control action is adjusted to the lower heat requirement.
The temperature drop is made possible by connecting the positive cable (D+) to connector S2, terminal C3, of the heater (see circuit diagrams, page 42 and 44).

Visit www.butlertechnik.com for more technical information and downloads.
Function

Control and safety devices

The heater is equipped with the following control and safety devices.

- If the heater does not ignite within 74 seconds after the fuel starts to pump, the start is repeated. If the heater still does not ignite after another 65 seconds of fuel being pumped, the heater is automatically shut down. After an unacceptable number of failed start attempts, the control box is locked.*

- If the flame goes off by itself during operation, the heater is restarted. If the heater does not ignite within 74 seconds after the fuel starts to pump again, the heater is automatically shut down. The shutdown on faults can be cancelled by briefly switching off and on again.

- In the case of overheating (e.g. water shortage, poorly ventilated cooling water circuit), the overheating sensor triggers, the fuel feed is interrupted and the heater is automatically shut down. Once the cause of the overheating has been eliminated, the heater can be re-started by switching it off and on again (provided that the heater has cooled down sufficiently, cooling water temperature < 70 °C). After the heater has been shut down due to overheating an unacceptable number of times, the control box is locked.*

* The lock can be cancelled and the faults read out:
 - with the EasyStart T timer
 - with the EasyStart R+ radio remote control.

In other control units
 - with the diagnostics unit
 - using the EDITH diagnostics tool.

For operation and fault list, please refer to the enclosed operating instructions or these troubleshooting and repair instructions.

- If the lower or upper voltage limit is reached, the heater is automatically shut down.

- The heater does not start up if the electric cable to the metering pump is interrupted.

- If one of the two glow plugs is defective, the start sequence takes place with one glow plug only.

- The speed of the blower motor is continuously monitored. If the blower motor does not start up, if it is blocked or if the speed differs by > 12.5 % of the desired speed, the heater is automatically shut down after 60 sec.

- The function of the water pump is continuously monitored.

Please note!

Do not repeat the switching off / on routine more than twice.

Forced shutdown during ADR / ADR99 operation

In vehicles for the transport of dangerous goods (e.g. tanker trucks), the heater must be switched off before the truck drives into a danger area (refinery, petrol station, etc.) Failure to comply results in the heater automatically switching off if:

- The vehicle engine is switched off.
- An additional unit is started up (auxiliary drive for unloading pump, etc.)
- A vehicle door is opened (ADR99 regulation, only in France). This is followed by a short after-run of the blower for max. 40 seconds.

Emergency stop – EMERGENCY OFF

If an emergency stop – EMERGENCY OFF – is necessary during operation, complete the following:

- Switch the heater off at the control element or
- remove the fuse or
- disconnect the heater from the battery.

Please visit www.butlertechnik.com for more technical information and downloads.
Technical data

<table>
<thead>
<tr>
<th>Heater type</th>
<th>HYDRONIC M-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater</td>
<td>HYDRONIC M8 Biodiesel</td>
</tr>
<tr>
<td>Version</td>
<td>D 8 W</td>
</tr>
<tr>
<td>Heating medium</td>
<td>Mixture of water and coolant (50 % water, 50 % coolant)</td>
</tr>
<tr>
<td>Control of the heat flow</td>
<td>Power</td>
</tr>
<tr>
<td>Heat flow (watt)</td>
<td>8000</td>
</tr>
<tr>
<td>Details for operation with diesel fuel. The heat flow can reduce by up to 15 % if operated with FAME.</td>
<td></td>
</tr>
<tr>
<td>Fuel consumption (l/h)</td>
<td>0.90</td>
</tr>
<tr>
<td>Electrical power consumption (watt)</td>
<td>during operation</td>
</tr>
<tr>
<td>on starting – after 25 sec.</td>
<td>200</td>
</tr>
<tr>
<td>during the "OFF" pause mode</td>
<td>32</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>12 volt</td>
</tr>
<tr>
<td>Operating range</td>
<td>Lower voltage limit: An undervoltage protection installed in the control box switches off the heater if the lower voltage limit is reached.</td>
</tr>
<tr>
<td>Upper voltage limit: An overvoltage protection installed in the control box switches off the heater if the upper voltage limit is reached.</td>
<td>15 volt</td>
</tr>
<tr>
<td>Allowable operating pressure</td>
<td>up to 2.0 bar overpressure</td>
</tr>
<tr>
<td>Water flow rate of the water pump towards 0.14 bar</td>
<td>1400 l/h</td>
</tr>
<tr>
<td>Minimum water flow rate of the heater</td>
<td>500 l/h</td>
</tr>
<tr>
<td>Fuel</td>
<td>Diesel – commercially available (DIN EN 590) FAME – for diesel engines according to DIN EN 14 214</td>
</tr>
<tr>
<td>Allowable ambient temperature</td>
<td>Heater / Control box</td>
</tr>
<tr>
<td>Metering pump</td>
<td>FAME</td>
</tr>
<tr>
<td></td>
<td>DieSEL</td>
</tr>
<tr>
<td></td>
<td>FAME</td>
</tr>
<tr>
<td>Interference suppression class</td>
<td>5 according to DIN EN 55025</td>
</tr>
<tr>
<td>Weight – with control box and water pump, without metering pump</td>
<td>ca. 6.2 kg</td>
</tr>
</tbody>
</table>

Please note!

Provided no limit values are given, the technical data provided is with the usual heater tolerances of ±10 % at rated voltage, 20 °C ambient temperature and reference altitude Esslingen.

Caution!

Failure to comply with the technical data can result in malfunctions.
Technical data

<table>
<thead>
<tr>
<th>Heater type</th>
<th>HYDRONIC M-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater</td>
<td>HYDRONIC M10</td>
</tr>
<tr>
<td>Version</td>
<td>D 10 W</td>
</tr>
<tr>
<td>Heating medium</td>
<td>Mixture of water and coolant (50% water, 50% coolant)</td>
</tr>
</tbody>
</table>

Control of the heat flow

<table>
<thead>
<tr>
<th>Heat flow (watt)</th>
<th>Power</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9500</td>
<td>8000</td>
<td>3500</td>
<td>1500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuel consumption (l/h)</th>
<th>during operation</th>
<th>on starting – after 25 sec.</th>
<th>during the "OFF" pause mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>during operation</td>
<td>after 25 sec.</td>
<td>during "OFF" pause mode</td>
</tr>
<tr>
<td></td>
<td>86</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rated voltage

- **12 volt**
- **24 volt**

Operating range

- **Lower voltage limit:**
 - An undervoltage protection installed in the control box switches off the heater if the lower voltage limit is reached.
 - Voltage: 10 volt
 - Voltage: 20 volt

- **Upper voltage limit:**
 - An overvoltage protection installed in the control box switches off the heater if the upper voltage limit is reached.
 - Voltage: 15 volt
 - Voltage: 30 volt

Allowable operating pressure

- up to 2.0 bar overpressure

Water flow rate of the water pump towards 0.14 bar

- 1400 l/h

Minimum water flow rate of the heater

- 500 l/h

Fuel

- Diesel – commercially available (DIN EN 590)

Allowable ambient temperature

- **Heater / Control box**
 - during operation: -40 °C to +80 °C
 - without operation: -40 °C to +85 °C
- **Metering pump**
 - during operation: -40 °C to +50 °C
 - without operation: -40 °C to +85 °C

Interference suppression class

- 5 according to DIN EN 55025

Weight – with control box and water pump, without metering pump

- ca. 6.2 kg

Caution!

Failure to comply with the technical data can result in malfunctions.

Please note!

Provided no limit values are given, the technical data provided is with the usual heater tolerances of ±10% at rated voltage, 20 °C ambient temperature and reference altitude Esslingen.
Product information

Technical data

<table>
<thead>
<tr>
<th>Technical parameter</th>
<th>HYDRONIC M-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater type</td>
<td>HYDRONIC M-II</td>
</tr>
<tr>
<td>Heater</td>
<td>HYDRONIC M12</td>
</tr>
<tr>
<td>Version</td>
<td>D 12 W</td>
</tr>
<tr>
<td>Heating medium</td>
<td>Mixture of water and coolant (50 % water, 50 % coolant)</td>
</tr>
<tr>
<td>Control of the heat flow</td>
<td></td>
</tr>
<tr>
<td>Heat flow (watt)</td>
<td></td>
</tr>
<tr>
<td>- High</td>
<td>12000</td>
</tr>
<tr>
<td>- Medium 1</td>
<td>9500</td>
</tr>
<tr>
<td>- Medium 2</td>
<td>5000</td>
</tr>
<tr>
<td>- Medium 3</td>
<td>3500</td>
</tr>
<tr>
<td>- Low</td>
<td>1500</td>
</tr>
<tr>
<td>- Low</td>
<td>1200</td>
</tr>
<tr>
<td>Fuel consumption (l/h)</td>
<td></td>
</tr>
<tr>
<td>- during operation</td>
<td>132</td>
</tr>
<tr>
<td>- Medium 1</td>
<td>86</td>
</tr>
<tr>
<td>- Medium 2</td>
<td>46</td>
</tr>
<tr>
<td>- Medium 3</td>
<td>39</td>
</tr>
<tr>
<td>- Low</td>
<td>35</td>
</tr>
<tr>
<td>- Low</td>
<td>34</td>
</tr>
<tr>
<td>Electrical power consumption (watt)</td>
<td></td>
</tr>
<tr>
<td>- during operation</td>
<td>120</td>
</tr>
<tr>
<td>- on starting – after 25 sec.</td>
<td></td>
</tr>
<tr>
<td>- during the "OFF" pause mode</td>
<td>32</td>
</tr>
<tr>
<td>Rated voltage</td>
<td></td>
</tr>
<tr>
<td>- 12 volt</td>
<td></td>
</tr>
<tr>
<td>- 24 volt</td>
<td></td>
</tr>
<tr>
<td>Operating range</td>
<td></td>
</tr>
<tr>
<td>- Lower voltage limit:</td>
<td></td>
</tr>
<tr>
<td>- An undervoltage protection installed in the control box switches off the heater if the lower voltage limit is reached.</td>
<td>10 volt</td>
</tr>
<tr>
<td>- 20 volt</td>
<td></td>
</tr>
<tr>
<td>- Upper voltage limit:</td>
<td></td>
</tr>
<tr>
<td>- An overvoltage protection installed in the control box switches off the heater if the upper voltage limit is reached.</td>
<td>15 volt</td>
</tr>
<tr>
<td>- 30 volt</td>
<td></td>
</tr>
<tr>
<td>Allowable operating pressure</td>
<td>up to 2.0 bar overpressure</td>
</tr>
<tr>
<td>Water flow rate of the water pump towards 0.14 bar</td>
<td>1400 l/h</td>
</tr>
<tr>
<td>Minimum water flow rate of the heater</td>
<td>500 l/h</td>
</tr>
<tr>
<td>Fuel</td>
<td>Diesel – commercially available (DIN EN 590)</td>
</tr>
<tr>
<td>Allowable ambient temperature</td>
<td></td>
</tr>
<tr>
<td>- during operation</td>
<td></td>
</tr>
<tr>
<td>- without operation</td>
<td></td>
</tr>
<tr>
<td>- Heater / Control box</td>
<td>-40 °C to +80 °C</td>
</tr>
<tr>
<td>- Metering pump</td>
<td>-40 °C to +50 °C</td>
</tr>
<tr>
<td>- without operation</td>
<td>-40 °C to +85 °C</td>
</tr>
<tr>
<td>Interference suppression class</td>
<td>5 according to DIN EN 55025</td>
</tr>
<tr>
<td>Weight – with control box and water pump, without metering pump</td>
<td>approx. 6.2 kg</td>
</tr>
</tbody>
</table>

⚠️ **Caution!**

Failure to comply with the technical data can result in malfunctions.

Please note!

Provided no limit values are given, the technical data provided is with the usual heater tolerances of ±10 % at rated voltage, 20 °C ambient temperature and reference altitude Esslingen.
3 Product information

Technical data

Water pump

<table>
<thead>
<tr>
<th></th>
<th>12 volt</th>
<th>24 volt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td>12 volt</td>
<td>24 volt</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>8.5 volt to 16 volt</td>
<td>18 volt to 33 volt</td>
</tr>
<tr>
<td>Electrical power consumption</td>
<td>32 watt</td>
<td></td>
</tr>
<tr>
<td>Water flow rate around 0.3 bar</td>
<td>700 l/h</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>−40 °C to +100 °C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>−40 °C to +120 °C</td>
<td></td>
</tr>
<tr>
<td>Technical data ±10 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Caution!
Failure to comply with the technical data can result in malfunctions.

Delivery curve of the water pump
Troubleshooting

What to check first in case of faults

• **Check whether:**
 - Fuel in the tank?
 - Fuel pipes leaking? (visual check)
 - Summer diesel still in the fuel pipe?
 - Heating lever (water valve) fully set to "HOT"?
 - Combustion air system or exhaust system damaged or blocked?

• **Electrical components:**
 - Cables, connections damaged?
 - Contacts corroded?
 - Fuses defective?
 - Incorrect wiring? (short circuits, interrupted / broken)

• **Check battery voltage**
 - Battery voltage < 10 volt, the undervoltage protection of the 12 volt heater has triggered.
 - Battery voltage < 20 volt, the undervoltage protection of the 24 volt heater has triggered.

• **Check voltage supply** U_{Batt} (Terminal 30)
 Disconnect the 12-pin connector (B2) and measure the voltage applied at the control box / blower unit between chamber A3 (cable 2.50 rt) and chamber A2 (cable 2.50 br).
 If it differs from the battery voltage, check the fuses, the supply cables, the negative connection and the positive support point on the battery for voltage drop (corrosion / interruption).

• **Check switch-on signal** (S+)
 If using the EasyStart R+, R and T control units.
 Disconnect the 12-pin connector (B2) at the control box / blower unit and then use the control unit to switch on the heater.
 Measure the applied voltage in the connector (B2) between chamber B4 (cable 0.750 bl/ws) and chamber A2 (cable 2.50 br).
 If no voltage is applied, then check the supply cable (cable 1.0 ge), the 5 A fuse (Item 2.7.1 in the circuit diagram) and the control unit.

 In all other control units
 Disconnect the 12-pin connector (B2) at the control box / blower unit and then press the button C on the control unit.
 Measure the applied voltage in the connector (B2) between chamber C4 (cable 1.0 ge) and chamber A2 (cable 2.50 br).
 If no voltage is applied, then check the supply cable (cable 1.0 ge), the 5 A fuse (Item 2.7.1 in the circuit diagram) and the control unit.

Locking the control box

The control box is locked if the following faults occur:

• **Too many attempted starts**
 If the heater performs several failed starting attempts in succession – fault code 050 is displayed –> the control box is locked.

• **Overheating**
 If the heater overheats several times in succession – fault code 015 is displayed –> the control box is locked.

Cancel the control box lock

Cancellation of the control box lock depends on the appropriate test equipment and is described on pages 14 to 17.

Visit www.butlertechnik.com for more technical information and downloads.
Troubleshooting

Overview of the individual test equipment and control units

The electronic control box can store up to 5 faults, which can be read out and displayed. The following test equipment can be used to query the fault memory in the control box and if necessary to delete the locking of the control box:

Testing equipment

<table>
<thead>
<tr>
<th>Test equipment</th>
<th>Order No.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic unit</td>
<td>22 1529 89 00 00</td>
</tr>
<tr>
<td>also required: Adapter cable</td>
<td>22 1000 33 44 00</td>
</tr>
<tr>
<td>EDITH diagnostics tool</td>
<td>22 1524 89 00 00</td>
</tr>
<tr>
<td>– ISO adapter</td>
<td>22 1524 89 00 00</td>
</tr>
<tr>
<td>also required: Adapter cable</td>
<td>22 1000 33 44 00</td>
</tr>
</tbody>
</table>

If the diagnostics cable is connected, the following control units can also be used to query the fault memory in the control box and if necessary to delete the locking of the control box:

Control units

<table>
<thead>
<tr>
<th>Control units</th>
<th>Order No.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EasyStart T</td>
<td>22 1000 32 88 00</td>
</tr>
<tr>
<td>EasyStart R+</td>
<td>22 1000 32 80 00</td>
</tr>
</tbody>
</table>

Please note!

If the fault memory cannot be read out, check the diagnostics cable is properly laid and is not damaged.

External diagnostics system

With an external, vehicle-specific diagnostics system => Consult the vehicle manufacturer.
4 Troubleshooting

Diagnostic unit
(Order No.: 22 1529 89 00 00)

An adapter cable is also required to connect the diagnostic unit (Order No.: 22 1000 33 44 00).

The current fault is displayed as "AF" and a 2-digit number and is always written in the memory location F1. Preceding faults are moved to the memory locations F2 – F5, if necessary the content of memory location F5 is overwritten.

Please note!
- It is very important to always install in the given order.
- Not only the defective component, but also a defective current circuit results in a fault being displayed.
- Fault code, fault description, cause / remedial action are described on pages 18 to 20.

Connect diagnostic unit
Disconnect the cable loom. Connect the adapter cable to the heater. Connect the cable loom to the adapter cable, housing connector.
Connect the adapter cable with the cable loom connector of the diagnostic unit (new version) or Connect the adapter cable with the cable loom connector of the diagnostic unit (old version). Then connect the 8-pin connector to the diagnostic unit (old version).
Start the diagnosis query.

Query the fault memory
- Use the D button to switch on the heater. The display is as follows:

 d1R

- After 8 sec. the following is displayed: The display is as follows:

 RF:00

Heater has no malfunction

or

 RF:64

 e.g. current fault / fault code 64

or

 - - -

Fault diagnosis is not possible

Possible causes:
- Adapter cable is not properly connected.
- Control box is defective or has no diagnosis capability (no universal control box).

Display of the fault memory F1 – F5 or F5 – F1
- Press the button or once or several times to display the fault memory. The display is as follows:

 F2:10

 e.g. fault memory 2 / fault code 10

Please note!
Only the fault memory locations with a fault assigned to them are displayed.

Delete fault memory
- Press both buttons simultaneously until the following is displayed: The display is as follows:

 RF:00

Heater has no malfunction

or

 RF:64

 e.g. current fault / fault code 64

or

 - - -

Fault diagnosis is not possible

- If all the fault memory locations have been deleted the most recent fault is displayed. The current fault is not reset to 00 until the heater is restarted – provided no new fault exists. The display is as follows:

 RF:00

Heater has no malfunction

Visit www.butlertechnik.com for more technical information and downloads.
Cancel the control box lock

- Delete the fault memory as described and use the button to switch off the heater.
- The control box lock is cancelled and the diagnosis is ended.

The display is as follows:

![Diagram](image)

1. Heater
2. Adapter cable
3. Diagnostic unit
4. Diagnostic unit (old version, no longer available)
5. Connector housing, is not connected.
Troubleshooting

EDiTH diagnostic tool with ISO adapter
(Order No.: 22 1524 89 00 00)

An adapter cable is also required to connect the ISO adapter
(Order No.: 22 1000 33 44 00).

Please note!
- It is very important to always install in the given order.
- Not only the defective component, but also a defective current circuit results in a fault being displayed.
- The fault code, fault description, cause / remedial action are described on pages 18 to 20.
- The EDiTH diagnostic tool scope of delivery does not include the software, this must be downloaded from the Service Portal.

Connect ISO adapter

Disconnect the cable loom.
Connect the adapter cable connector to the heater.
Connect the cable loom to the adapter cable housing connector.
Connect the adapter cable with the cable loom connector of the ISO adapter.
Connect the SUB-D connection cable with the ISO adapter and at the PC.
Start the diagnosis query.

Install software on the PC
- Double-click to start the "setup.exe" file and follow the instructions of the SETUP program.

Query/Delete fault memory F1 – F5 or cancel the control box lock
- Start the software at the PC:
 - on the Desktop —> double-click the "EDiTH" icon
 - select heater type
 - press the "GO" button.
- Delete fault memory or cancel the control box lock:
 - press the "Delete fault memory" button
 —> the stored faults F1 – F5 are deleted and the control box is unlocked.

Quit diagnosis
- Press the "STOP" button —> the fault memory query is ended.

Diagram:

1. Heater
2. Adapter cable
3. ISO adapter
4. SUB-D connection cable

Visit www.butlertechnik.com for more technical information and downloads.
4 Troubleshooting

EasyStart R+ radio remote control
(Order No.: 22 1000 32 80 00)

EasyStart T timer
(Order No.: 22 1000 32 88 00)

If faults occur in the heater while it is running, they are displayed with "Err" after the mobile unit or timer has been activated.

The current fault is displayed. The stored faults "F1" to "F5" can be queried.

Please note!
- The bl/ws diagnostics cable must be connected in order to perform the diagnosis. To this end, please refer to and follow the circuit diagram for the radio remote control or the timer and for the heater.
- If the diagnostics cable is not connected, the *Diagnosis* menu is blocked.
- Not only the defective component, but also a defective current circuit results in a fault being displayed.
- The fault code, fault description, cause / remedial action are described on pages 18 to 20.

Query / delete fault memory
Activate mobile unit / timer
(see EasyStart R+ / EasyStart T operating instructions)

Press → to confirm OK symbol.

Heater is switched on.

Press OK to confirm operating time.

Briefly press ← and → simultaneously.

The following actions are possible:
- Retrieve fault memory.
 Use ← or → to retrieve the fault memory F1 – F5.
- Retrieve fault memory again.
 Briefly press ← and → simultaneously.
- Delete fault memory (display dEL)
 Press OK.

Press OK again.

The diagnosis is completed.

Switch off the heater.
Troubleshooting

<table>
<thead>
<tr>
<th>Fault code Display</th>
<th>Fault description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>No faults</td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>Warning</td>
<td>• Check connection and / or lead for continuity, short circuit and damage.</td>
</tr>
<tr>
<td></td>
<td>Short circuit in "Burglar Alarm" output</td>
<td></td>
</tr>
<tr>
<td>009</td>
<td>ADR / ADR99 shutdown</td>
<td>• Switch the heater off and then on again – The shutdown must be cancelled by D+ or HA / NA.</td>
</tr>
<tr>
<td>010</td>
<td>Overvoltage cutoff</td>
<td>Overvoltage applied to control box for at least 6 seconds without interruption –> heater not working. • Disconnect heater / cable harness plug-in connector, start the vehicle engine, measure the voltage. Connector B2, PIN A2 and A3: – If the voltage is >15 volt or >30 volt, check the generator regulator and / or the battery.</td>
</tr>
<tr>
<td>011</td>
<td>Undervoltage cutoff</td>
<td>Undervoltage applied to control box for at least 20 seconds without interruption –> heater not working. • Disconnect heater / cable harness plug-in connector, start the vehicle engine, measure the voltage. Connector B2, PIN A2 and A3: – If the voltage is <10 volt or <20 volt, then check the fuses, the supply cables, the negative connections and the positive support point at the battery for voltage drop (corrosion).</td>
</tr>
<tr>
<td>012</td>
<td>Overheating</td>
<td>Overheating sensor signals temperature greater than 120 °C. • Vent heater (water shortage), open heater slide valve, check water flow rate. • Measure the resistive value of the overheating sensor, connector B1, PIN 2 and 4; for measured values see page 28. – If overheating sensor ok, check connection leads for continuity, short circuit and damage.</td>
</tr>
<tr>
<td>014</td>
<td>Difference between the overheating and temperature sensor is too large</td>
<td>Difference between measured value in overheating sensor and temperature sensor greater than 70 K. • Vent heater (water deficiency), open heater slide valve and check water flow rate. • Measure the resistive value of the temperature sensor, connector B1, PIN 2 and 4 or connector B1 PIN 1 and 2; for measured values see page 28. – If temperature sensor ok, check connection leads for continuity, short circuit and damage.</td>
</tr>
<tr>
<td>015</td>
<td>Too much overheating detected, Control box is locked</td>
<td>Control box locked due to too frequent overheating (fault code 012 or 014) in succession. Vent heater (water shortage), open heater slide valve, check water flow rate. • Unlock the control box by deleting the fault memory, see pages 13 to 17.</td>
</tr>
<tr>
<td>017</td>
<td>Overheating, Hardware threshold exceeded</td>
<td>Max. temperature exceeded at the overheating sensor (180 °C). • Vent heater (water shortage), open heater slide valve, check water flow rate. • Check overheating sensor —> fault code 012. • Check control box.</td>
</tr>
<tr>
<td>019</td>
<td>Glow plug 1, Ignition energy too low</td>
<td>Glow plug 1 energy input is too low (< 2000 Ws) • Check glow plug for continuity, short circuit and damage —> Fault code 020. • Check control box.</td>
</tr>
<tr>
<td>020</td>
<td>Glow plug 1, interruption</td>
<td>• Measure cold resistance of the glow plug at approx. 20 °C ambient temperature – connector B1, PIN 7 and 10. If the values are as follows the glow plug is ok, if the values differ – replace the glow plug. Measured value: • 12 volt – glow plug = 0.42 – 0.6 ohm • 24 volt – glow plug = 1.2 – 1.9 ohm – If the glow plug is ok, check the lead harness of the glow plug for continuity, short circuit and damage.</td>
</tr>
<tr>
<td>021</td>
<td>Glow plug 1, overload / short circuit downstream of earth</td>
<td></td>
</tr>
<tr>
<td>022</td>
<td>Glow plug 1, short circuit downstream of +Ub</td>
<td></td>
</tr>
</tbody>
</table>

Visit www.butlertechnik.com for more technical information and downloads.

www.butlertechnik.com
Troubleshooting

<table>
<thead>
<tr>
<th>Fault code Display</th>
<th>Fault description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Remedial action</td>
</tr>
<tr>
<td>023</td>
<td>Glow plug 2, interruption</td>
<td>Measure cold resistance of the glow plug at approx. 20 °C ambient temperature – connector B1, PIN 11 and 14. If the values are as follows the glow plug is ok, if the values differ – replace the glow plug. Measured value: 12 volt – glow plug = 0.42 – 0.6 ohm 24 volt – glow plug = 1.2 – 1.9 ohm – If the glow plug is ok, check the lead harness of the glow plug for continuity, short circuit and damage.</td>
</tr>
<tr>
<td>024</td>
<td>Glow plug 2, overload / short circuit downstream of earth</td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>JE-K line fault</td>
<td>Check diagnostics cable for continuity, short circuit and damage – connector B2, PIN B4. – if ok, check control box.</td>
</tr>
<tr>
<td>026</td>
<td>Glow plug 2, short circuit downstream of +Ub</td>
<td>see fault code 023 / 024</td>
</tr>
<tr>
<td>029</td>
<td>Glow plug 2, Ignition energy too low</td>
<td>Glow plug 2 energy input is too low (< 2000 Ws) Check glow plug for continuity, short circuit and damage. -> Fault code 023. Check control box.</td>
</tr>
<tr>
<td>033</td>
<td>Burner motor, interruption</td>
<td>Check the burner motor’s connection leads for continuity, short circuit and damage – connector B1, PIN 3, 6 and 9. Check burner motor for easy movement by manually rotating the impeller – if not smooth running, remove the blockage. – if ok, replace control box / blower unit.</td>
</tr>
<tr>
<td>037</td>
<td>Water pump not working</td>
<td>Check water pump. Apply voltage to the water pump – connector B1, PIN 12 and 13 (power input = max. 4 A or 2 A) – If WP does not rotate, replace WP. – If WP is ok -> replace control box / blower unit.</td>
</tr>
<tr>
<td>041</td>
<td>Water pump, interruption</td>
<td>Check the water pump’s connection and lead harness for continuity, short circuit and damage – connector B1, PIN 12 and 13. – If ok, check water pump -> fault code 037. Water pump in dry running – Vent heater (water shortage), open heater slide valve, check water flow rate</td>
</tr>
<tr>
<td>043</td>
<td>Water pump, overload short circuit</td>
<td></td>
</tr>
<tr>
<td>047</td>
<td>Metering pump, overload short circuit</td>
<td>Check the metering pump’s connection and lead harness for continuity, short circuit and damage – connector B2, PIN A1. – If ok, check the metering pump – setpoint value approx. 20 ohm.</td>
</tr>
<tr>
<td>048</td>
<td>Metering pump, interruption</td>
<td></td>
</tr>
<tr>
<td>050</td>
<td>Too many attempted starts</td>
<td>Control box locked due to repeated switching on in succession without flame detection (fault code 052). Check fuel supply, exhaust and combustion air system. Check glow plug -> see fault code 019 to 024 / 026 / 029. Check flame sensor -> fault code 064 / 065. Unlock the control box by deleting the fault memory, see pages 13 to 17.</td>
</tr>
<tr>
<td>052</td>
<td>Exceeding of safety time</td>
<td>No flame detected within the start phase. Flame sensor value < 80 °C, therefore automatic shutdown because safety time exceeded. Check fuel supply, exhaust and combustion air system. Check glow plug -> see fault code 019 to 024 / 026 / 029. Check flame sensor -> fault code 064 / 065.</td>
</tr>
</tbody>
</table>
Troubleshooting

<table>
<thead>
<tr>
<th>Fault code</th>
<th>Fault description</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Display 053 | Flame cutout in "POWER" control stage | Heater ignited (flame detected) and signals flame cutout during a power stage. *Remedial action*
- Check fuel quantity, blower speed, fuel supply, exhaust and combustion air system.
- Check flame sensor -> fault code 064 / 065. |
| Display 054 | Flame cutout in "HIGH" control stage | |
| Display 055 | Flame cutout in "Medium" control stage (D 8 W / D 10 W)
"Medium1" control stage (D 12 W)
"Medium 2" control stage (D 12 W)
"Medium 3" control stage (D 12 W)
Flame cutout in "LOW" control stage | |
| Display 056 | Too rapid rise in water temperature | Vent heater (water shortage), open heater slide valve, check water flow rate.
- Check temperature sensor –> fault code 060 / 061
Check temperature sensor interruption |
| Display 057 | Temperature sensor interruption | Temperature sensor signals temperature value outside the measuring range.
- Measure the resistive value of the temperature sensor, Connector B1, PIN 1 and 2; for measured values see page 28.
- If temperature sensor ok, check connection leads for continuity, short circuit and damage. |
| Display 058 | Temperature sensor short circuit | |
| Display 060 | Flame sensor interruption | Flame sensor signals temperature value outside the measuring range.
- Measure the resistive value of the flame sensor – connector B1, PIN 5 and 8; for measured values see page 29.
- If flame sensor ok, check connection leads for continuity, short circuit and damage. |
| Display 061 | Flame sensor short circuit | |
| Display 064 | Overheating sensor interruption | Overheating sensor signals temperature value outside the measuring range.
- Check overheating sensor –> fault code 012. |
| Display 065 | Overheating sensor short circuit | |
| Display 071 | Overheating detection hardware is defective, operating lock-out | Control box is defective.
Replace control box / blower unit. |
| Display 072 | Internal reset | Internal control box fault, replace control box / blower unit. |
| Display 074 | RAM error | RAM error, at least one RAM cell is not working
EEPROM error, checksum error within the area of the operating data, diagnostic parameters or calibration values
Invalid data record, checksum error
Internal temperature sensor is defective / ECU too hot
Internal device error
Main relay is faulty
Too many resets, operating lock-out |
Repair instructions

The permitted repair work on the heater is described in the "Repair Instructions" chapter. The heater must be removed from the vehicle for the repair work to be carried out.

The heater is assembled in the reverse order, note and follow any additional instructions.

Please note!

After completing all the work and installing the heater in the vehicle, perform a functional check on the heater.

Always observe the following safety instructions before working on the heater

Danger!
Risk of injury, burns and poisoning!
- Always switch off the heater beforehand and leave it to cool.
- Disconnect the battery.
- The heater must not be operated in closed rooms such as garages or workshops.
 Exception: Exhaust suction available directly at the entry to the exhaust pipe.

Caution!
- The seals of dismantled components must be renewed.
- During repair work, check all components for damage and if necessary replace.
- Check connector contacts, plug-in connections and cables for corrosion and damage and if necessary repair.
- Only ever use Eberspächer spare parts if replacements are necessary.
- After working on the coolant circuit the level of the coolant must be checked and if necessary topped up according to the vehicle manufacturer’s instructions.
 The coolant circuit must then be vented.
- Operation or the after running of the heater may only be stopped in an emergency (see "EMERGENCY OFF" page 7) by interrupting the battery current (risk of heater overheating).

Special tool

AMP release tool

The AMP release tool is used to release plug-in contacts in a connector housing.

This release tool can be ordered directly from AMP.
- For Micro Timer AMP Order No. 0-0539960-1
- For Junior Power Timer AMP Order No. 1-1579007-6
- For Standard Timer, Junior Timer AMP Order No. 1-1579007-4

Visit www.butlertechnik.com for more technical information and downloads.
5 Repair instructions

Assembly drawing

Visit www.butlertechnik.com for more technical information and downloads.
Repair instructions

Parts list

1 Impeller cover
2 O-ring 117.07 x 3.53
3 Cover, side
4 Impeller
5 Glow plug 1
6 Glow plug 2
7 Spark plug socket lining
8 Combustion chamber
9 M5 x 16 TAPTITE / DIN 7500 TORX screw
10 Control box / blower unit
11 Flame sensor
12 Cable tie
13 Electric motor cover
14 M5 x 16 TAPTITE / DIN 7500 TORX screw
15 M4 x 12 TAPTITE / DIN 7985 TORX screw
16 Compression spring
17 Overheating sensor
18 Temperature sensor
19 Overheating / temperature sensor cable loom
20 Jacket with heat exchanger
21 M5 x 25 TAPTITE / DIN 7500 TORX screw
22 Grommet
23 Combustion chamber seal
24 Water pump cable loom connector
25 Hose clip
26 Water pump
27 O-ring 19.8 x 2.3
28 14-pin connector

Please note!

Notes on various components

• Control box / blower unit, Item 10
 Control box / blower unit and electric motor cannot be dismantled. If these components are defective the complete control box / blower unit must be replaced.

• Jacket with heat exchanger, Item 20
 The jacket and heat exchanger cannot be dismantled. If these components are defective the complete jacket with heat exchanger component must be replaced.

• O-ring, Item 2
 The O-ring is included in the scope of supply of the ET part "control box / blower unit". The O-ring is also available as a component part.

• Combustion chamber seal, Item 23
 The combustion chamber seal is included in the scope of supply of the following ET parts:
 – Jacket with heat exchanger (20)
 – Combustion chamber (8)
 – Glow plug (5) and (6)
 The combustion chamber seal is also available as a component part.

Visit www.butlertechnik.com for more technical information and downloads.
Repair instructions

Preparatory work for all repairs
Figure 1 and 2

- Clamp the removed heater in a retaining device (vice).
- Using 2 screwdrivers, always undo 2 snap connections of the impeller cover at a time, starting at the control box / blower unit. Keep to the order shown in the figure (1. – 8.)
- Remove cover.
- Remove O-ring (2).

Please note!
The O-ring (2) must always be renewed.

Repair step 1
Dismantle control box / blower unit and jacket

Remove overheating sensor and temperature sensor
Figure 3 – 5

- Remove the (15) M4 x 12 screws of the compressive springs (16) and use pliers to pull off the overheating (17) and temperature sensor (18).

Please note!
Do not pull out the overheating (17) and temperature sensor (18) from the holder by pulling on the connection cable, always use pliers to remove them.

Visit www.butlertechnik.com for more technical information and downloads.
5 Repair instructions

Repair step 1
Dismantle control box / blower unit and jacket

Remove water pump connector
Figure 6
- Disconnect the connector (24) at the water pump (26) and pull the cable loom out of the holder.

Remove side cover and dismantle jacket
Figure 7
- Pull out side cover (3) from above.
- Undo the 4 screws (21) M5 x 25 in the jacket (20) and remove the jacket from the control box / blower unit.

Please note!
The control box / blower unit may not be placed on the exposed impeller.

Remove electric motor cover
Figure 8
- Undo the 2 screws (14) M5 x 16 of the electric motor cover (13) and remove the cover.

Please note!
The control box / blower unit may not be placed on the exposed impeller.
5 Repair instructions

Repair step 1
Dismantle control box / blower unit and jacket

Disconnect 14-pin connector at control box and release cables
Figure 9 – 11 / Sketch 1

- Use side cutters to open the cable tie (12).
- Disconnect the 14-pin connector (29).
- Use the AMP release tool to release plug-in contacts in the
 14-pin connector (29) for the electric motor, flame sensor
 (11), glow plug 1 (5) and glow plug 2 (6).
- Expose the cables of the two glow plugs from above (cable
duct).

Please note!

When replacing the control box / blower unit, the sensor (19)
and water pump lead harnesses can be left in the 14-pin con-
nector (29).

Sketch 1

Visit www.butlertechnik.com for more technical information and downloads.
5 Repair instructions

Repair step 1
Control box / blower unit and jacket

Remove flame sensor
Figure 12

- Unscrew the flame sensor (11) from the housing of the control box / blower unit.

Dismantle combustion chamber
Figure 13 and 14

- Undo the 3 screws (9) M5 x 16 of the combustion chamber (8).
- Lift the combustion chamber (8) with the fuel pipe until the grommet (22) is exposed, then remove the combustion chamber.
- Remove combustion chamber seal (23).

Please note!
Remove combustion chamber seal (23) without leaving residues.
Always check the glow plugs during this repair step, see repair step 3.

Visit www.butlertechnik.com for more technical information and downloads.
Repair instructions

Repair step 2
Assemble control box / blower unit and jacket

Install combustion chamber seal
Figure 15 and 16

- Carefully guide the combustion chamber seal (23) over the cables of the glow plugs and over the fuel pipes and position on the combustion chamber (8).

Please note!
Take care when installing the new combustion chamber seal (23) as there is a risk of breaking it.

Install grommet
Figure 16 and 17

- Carefully position the grommet (22) on the combustion chamber seal (23).

Please note!
Ensure the grommet is installed in the correct position, see Figure 17.

Insert combustion chamber
Figure 18

- First insert the combustion chamber (8) with the grommet (22) into the control box / blower unit (10).
If the grommet (22) has been completely inserted, align the combustion chamber and combustion chamber seal with the control box / blower unit (10).
Repair instructions

5 Repair instructions

Repair step 2
Assemble the control box / blower unit and jacket

Install combustion chamber
Figure 19

- Use 3 screws (9) M5 x 16 to fix the combustion chamber (8).

Tightening torque M5 x 16 screw: 6 Nm

Lay sensor lead harness and leads of the glow plugs
Figure 20 and 21

- First lay the sensor lead harness (19) in the side cable duct, then lay the 4 leads of glow plugs 1 (5) and 2 (6) in the cable duct.
- Lay the sensor lead harness (19) and the glow plug leads to the 14-pin connector (29).
- Position the side cover (3) on the middle of the control box / blower unit (10) and push into the cable duct guide.

Please note!
It is imperative to keep to the correct laying order for the sensor lead harness (19) and the glow plug leads.
- The glow plug leads may not be laid underneath the sensor lead harness (19).
- The sensor lead harness (19) must be laid in the area of the fuel pipe as shown in Figure 20.
- The side cover (3) is conical at the bottom to simplify installation.
5 Repair instructions

Repair step 2
Assemble the control box / blower unit and jacket

Install flame sensor
Figure 22

- Screw the flame sensor (11) into the housing of the control box / blower unit.

Flame sensor tightening torque: 2.5\(^\pm0.5\) Nm.

Connect flame sensor lead harness and electric motor leads
Figure 23 / Sketch 2

- Latch the flame sensor lead harness (11) and the three leads of the electric motor into position in the 14-pin connector (29).

Please note!
- The leads may not lay against the housing.
- Always lay the br/ws (long) leads of glow plug 1 (5) last and latch into position in the 14-pin connector (29).
5 Repair instructions

Repair step 2
Assemble control box / blower unit and jacket

Connect the glow plug leads
Figure 24, 25 and Sketch 3

- First, latch the leads of glow plug 2 (6 / short leads) into position in the 14-pin connector (29).
- Then wind the leads of glow plug 1 (5 / long leads) 2 x around the leads already latched into position in the 14-pin connector and then latch into position in the 14-pin connector (29).
- Use a cable tie (12) to bundle all leads above the winding.
- Connect the 14-pin connector (29) to the control box / blower unit.

Please note!
- The leads may not lay against the housing.
- Check the glow plugs before completely assembling the heater. For check values, see fault code 020 / 021.
5 Repair instructions

Repair step 2
Assemble control box / blower unit and jacket

Install electric motor cover
Figure 26 and 27

- Position the electric motor cover (13) on the housing of the control box / blower unit, at the same time, insert the water pump lead harness in the groove provided in the cover.
- Use 2 screws (14) M5 x 16 to fasten the electric motor cover (13) onto the housing of the control box / blower unit.

Tightening torque M5 x 16 screw: 6\(\pm 0.5\) Nm.

Assemble control box / blower unit and jacket
Figure 28

Position the heat exchanger on the control box / blower unit and fasten with 4 screws (21) M5 x 25.

Tightening torque M5 x 25 screw: 6\(\pm 0.5\) Nm.

Please note!
Tighten the 4 screws (21) M5 x 25 cross-wise (i.e. tighten diagonally opposite screws).

Visit www.butlertechnik.com for more technical information and downloads.
5 Repair instructions

Repair step 2
Control box / blower unit and jacket

Lay water pump lead harness
Figure 29

- Insert the water pump lead harness into the holder on the jacket, lay up to the water pump and connect.

Install overheating and temperature sensor
Figure 30 and 31

- Insert the overheating (17) and temperature sensor (18) into the holders on the jacket.
- Insert the sensor cable loom (19) into the holders on the jacket.
- Use 2 screws (15) M4 x 12 to fasten both springs (16) on the overheating (17) and temperature sensor (18).

Tightening torque M4 x 12 screw: 6\(^{+0.5}\) Nm.

Please note!

Insert the temperature sensor as shown in the figure to avoid pinching the cable loom.

Visit www.butlertechnik.com for more technical information and downloads.
Repair instructions

Repair step 2
Control box / blower unit and jacket

Install impeller cover
Figure 32

- Clamp the removed heater in a retaining device (vice) and position the new O-ring (2) on the control box / blower unit.
- Install the impeller cover; ensure that none of the leads of the sensor lead harness (19) get jammed.
5 Repair instructions

Repair step 3

Remove / check glow plug
Figure 33

- Carry out repair step 1.
- Unscrew glow plugs 1 (5) and 2 (6) from the combustion chamber housing (8), if necessary check the glow plugs; for check values see fault code 020 / 021.
- Visually check the spark plug socket lining, if necessary renew the spark plug lining.

Install glow plug
Figure 33

- Screw glow plug 1 (5) with long connection leads into the left-hand spark plug socket (2 fuel lines).
- Screw glow plug 2 (6) with short connection leads into the right-hand spark plug socket (1 fuel line).
- Assemble the heater according to repair step 2.

Characteristics of the glow plugs

Glow plug 1 (5) long leads
- br lead in Chamber 7
- ws lead in Chamber 10

Glow plug 2 (6) short leads
- br lead in Chamber 14
- ws lead in Chamber 11

12 volt glow plug
- green banderole around the br and ws leads

24 volt glow plug
- yellow banderole around the br and ws leads

Clean ignition air drillholes
Figure 34

- Use a pointed object to clean the ignition air drillholes in the left-hand and right-hand spark plug sockets.

Visit www.butlertechnik.com for more technical information and downloads.
Repair instructions

Repair step 4

Remove spark plug socket lining
Figure 35

- Carry out repair step 1.
- Unscrew glow plugs from the combustion chamber housing (8).
- Use a pointed object to pull the spark plug socket lining out of the spark plug socket.

Install spark plug socket lining
Figure 36

- Insert the spark plug socket linings, with the bevelled edge facing upwards, into the spark plug sockets up to the limit stop.

Please note!
Ensure the ignition air drillhole in the spark plug socket is not concealed by the spark plug socket lining.

- Assemble the heater according to repair step 2.
Repair instructions

Repair step 5

Check overheating and temperature sensor
Figure 37 / Diagram 1

- Removal of the overheating (17) and temperature sensor (18) is described in repair step 1.
- Use the digital multimeter to check the overheating (17) and temperature sensor (18). If the resistance value lies outside the table of values or the diagram, then replace the overheating (17) and temperature sensor (18).
- Installation of the overheating (17) and temperature sensor (18) is described in repair step 2.

Table of values

<table>
<thead>
<tr>
<th>Temp[°C]</th>
<th>0</th>
<th>25</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{NTC}[kΩ]</td>
<td>32.55</td>
<td>10</td>
<td>5.33</td>
<td>2.49</td>
<td>1.26</td>
<td>0.677</td>
<td>0.389</td>
</tr>
</tbody>
</table>

Diagram 1
5 Repair instructions

Repair step 6

Check flame sensor
Figure 38 / Diagram 2

- Removal of the flame sensor (11) is described in repair step 1.
- Use the digital multimeter to check the flame sensor (11). If the resistance value lies outside the table of values or the diagram, then replace the flame sensor (11).
- Installation of the flame sensor (11) is described in repair step 2.

Table of values

<table>
<thead>
<tr>
<th>Temp[°C]</th>
<th>-50</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>R [Ω]</td>
<td>803</td>
<td>1000</td>
<td>1194</td>
<td>1385</td>
<td>1573</td>
<td>1758</td>
<td>1941</td>
<td>2120</td>
<td>2297</td>
<td>2470</td>
</tr>
</tbody>
</table>

Diagram 2
5 Repair instructions

Repair step 7

Remove / attach water pump

Figure 39

• Disconnect the connector (24) at the water pump (26).
• Undo the hose clip (25).
• Remove the water pump.
• Check O-ring (27), replace if necessary.
• Install in the reverse order.

Hose clip tightening torque: $3 + 0.5$ Nm.

Please note!

When assembling the O-ring (28) coat it with lubricant, e.g., Hellerine.

Figure 39

24 Water pump connector
25 Hose clip
26 Water pump

Visit www.butlertechnik.com for more technical information and downloads.
Measuring the fuel quantity

Preparing for the measurement
(Sketch 4)

- Disconnect the fuel pressure line at the heater and place the end in a measuring cylinder (size 25 cm³).
- Switch on the heater, if the fuel discharges uniformly and free of bubbles, the fuel pipe is filled and vented.
- Switch off heater and empty measuring cylinder.

Measurement

- Switch on heater and wait until the metering pump starts pumping the fuel.
- During the measurement, hold the measuring cylinder at the level of the heater. After 68 sec. the pumping of the fuel is automatically switched off.
- Switch off heater, as otherwise it will start up again.
- Read off the quantity of fuel in the measuring cylinder.

Evaluation

Compare the measured quantity of fuel with the values in the following table. If the measured quantity of fuel is above the maximum value or below the minimum value, the metering pump must be replaced.

<table>
<thead>
<tr>
<th>Heater</th>
<th>Quantity of fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Desired</td>
</tr>
<tr>
<td>HYDRONIC M8 Diesel / FAME</td>
<td>5.7 cm³/68 sec</td>
</tr>
<tr>
<td>HYDRONIC M10 Diesel</td>
<td>7.5 cm³/68 sec</td>
</tr>
<tr>
<td>HYDRONIC M12 Diesel</td>
<td>7.5 cm³/68 sec</td>
</tr>
</tbody>
</table>

Please note!

Only carry out the fuel measurement if the battery is sufficiently charged. During the measurement the voltage applied to the box should be at least 11 volt or 23 volt and max. 13 volt or 25 volt.
Circuit diagram

6 Heater wiring

The heater is to be connected up electrically according to the EMC directives.

Caution!
Safety instructions for wiring the heater!

EMC can be affected if the heater is not connected up correctly. For this reason, comply with the following instructions:

- Ensure that the insulation of electrical cables is not damaged. Avoid:
 - chafing, kinking, jamming or exposure to heat.
- In waterproof connectors, seal any connector chambers not in use with filler plugs to ensure they are dirt-proof and water-proof.
- Electrical connections and ground connections must be free of corrosion and firmly connected.
- Lubricate connections and ground connections outside the heater interior with contact grease.

Please note!
Comply with the following when wiring the heater and the control unit:

- Electrical leads, switch and control gear must be positioned in the vehicle so that they can function perfectly under normal operating conditions without impairment (e.g. due to heat exposure, moisture, etc.).
- The following cable cross sections are to be used between the battery and heater. This ensures that the max. allowable voltage drop in the cables does not exceed 0.5 V for 12 V or 1 V for 24 V rated voltage.
 - Cable cross-sections for a cable length (plus cable + minus cable) of:
 - up to 5 m = cable cross-section 4 mm²
 - from 5 m up to 8 m = cable cross-section 6 mm²
- If the positive cable is to be connected to the fuse box (e.g. terminal 30), the vehicle’s cable from the battery to the fuse box must also be included in the calculation for the total cable length and re-dimensioned if necessary.
- Insulate unused cable ends.

Notes on rewiring the 12-pin cable harness connector

If, when replacing the HYDRONIC M with the HYDRONIC M-II, the cable harness installed in the vehicle is retained and continues to be used, it is necessary to remove the 12-pin connector using the AMP release tool (AMP Order No. 1-1579007-4) and to rewire it according to the following table.

12-pin cable harness connector

Connector is shown from the lead entry side.

<table>
<thead>
<tr>
<th>Connection</th>
<th>Cross-section</th>
<th>Cable colour</th>
<th>Rewiring 12-pin connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metering pump</td>
<td>1.5² gn</td>
<td>C4</td>
<td>A1</td>
</tr>
<tr>
<td>Terminal 31</td>
<td>4² br</td>
<td>C3</td>
<td>A2</td>
</tr>
<tr>
<td>Terminal 30</td>
<td>4² rt</td>
<td>C2</td>
<td>A3</td>
</tr>
<tr>
<td>Plus signal main battery switch</td>
<td>1.5² ws/rt</td>
<td>C1</td>
<td>A4</td>
</tr>
<tr>
<td>Plus signal Solenoid valve relay</td>
<td>–</td>
<td>B4</td>
<td>B1</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>1² bl</td>
<td>B3</td>
<td>B4</td>
</tr>
<tr>
<td>Plus signal ADR auxiliary drive</td>
<td>1² vi</td>
<td>B2</td>
<td>B3</td>
</tr>
<tr>
<td>Third party control Water pump</td>
<td>–</td>
<td>B1</td>
<td>B2 remains unused*</td>
</tr>
<tr>
<td>Blower relay</td>
<td>1² vt/ge</td>
<td>A4</td>
<td>C1</td>
</tr>
<tr>
<td>D+ for ADR operation</td>
<td>1² v/ign</td>
<td>A3</td>
<td>C2</td>
</tr>
<tr>
<td>Temperature drop</td>
<td>–</td>
<td>A2</td>
<td>C3</td>
</tr>
<tr>
<td>Heater ON</td>
<td>1² ge</td>
<td>A1</td>
<td>C4</td>
</tr>
</tbody>
</table>

* Third party control of the water pump is not provided for in the HYDRONIC M-II.

Please note!
Comply with the following when wiring the heater and the control unit:

- Electrical leads, switch and control gear must be positioned in the vehicle so that they can function perfectly under normal operating conditions without impairment (e.g. due to heat exposure, moisture, etc.).
- The following cable cross sections are to be used between the battery and heater. This ensures that the max. allowable voltage drop in the cables does not exceed 0.5 V for 12 V or 1 V for 24 V rated voltage.
 - Cable cross-sections for a cable length (plus cable + minus cable) of:
 - up to 5 m = cable cross-section 4 mm²
 - from 5 m up to 8 m = cable cross-section 6 mm²
- If the positive cable is to be connected to the fuse box (e.g. terminal 30), the vehicle’s cable from the battery to the fuse box must also be included in the calculation for the total cable length and re-dimensioned if necessary.
- Insulate unused cable ends.

Please note!
Comply with the following when wiring the heater and the control unit:

- Electrical leads, switch and control gear must be positioned in the vehicle so that they can function perfectly under normal operating conditions without impairment (e.g. due to heat exposure, moisture, etc.).
- The following cable cross sections are to be used between the battery and heater. This ensures that the max. allowable voltage drop in the cables does not exceed 0.5 V for 12 V or 1 V for 24 V rated voltage.
 - Cable cross-sections for a cable length (plus cable + minus cable) of:
 - up to 5 m = cable cross-section 4 mm²
 - from 5 m up to 8 m = cable cross-section 6 mm²
- If the positive cable is to be connected to the fuse box (e.g. terminal 30), the vehicle’s cable from the battery to the fuse box must also be included in the calculation for the total cable length and re-dimensioned if necessary.
- Insulate unused cable ends.

Please note!
Comply with the following when wiring the heater and the control unit:

- Electrical leads, switch and control gear must be positioned in the vehicle so that they can function perfectly under normal operating conditions without impairment (e.g. due to heat exposure, moisture, etc.).
- The following cable cross sections are to be used between the battery and heater. This ensures that the max. allowable voltage drop in the cables does not exceed 0.5 V for 12 V or 1 V for 24 V rated voltage.
 - Cable cross-sections for a cable length (plus cable + minus cable) of:
 - up to 5 m = cable cross-section 4 mm²
 - from 5 m up to 8 m = cable cross-section 6 mm²
- If the positive cable is to be connected to the fuse box (e.g. terminal 30), the vehicle’s cable from the battery to the fuse box must also be included in the calculation for the total cable length and re-dimensioned if necessary.
- Insulate unused cable ends.
Circuit diagram: HYDRONIC M-II – 12 volt / 24 volt
6 Circuit diagram

Parts list for circuit diagram: HYDRONIC M-II
12 volt / 24 volt

1.1 Burner motor
1.2 Glow plug 1
1.2.1 Glow plug 2 (optionally 12 kW / FAME)
1.5 Overheating sensor
1.12 Flame sensor
1.13 Temperature sensor

2.1 Control box
2.2 Metering pump
2.5.7 Relay, vehicle fan
2.5.18 Relay, water circuit switch over – to be installed by the customer if necessary
2.7 Main fuse
 12 volt = 25 A
 24 volt = 15 A
2.7.1 Fuse, actuation 5 A
2.7.5 Fuse, vehicle fan 25 A
2.12 Water pump

5.1 Battery
5.10 Vehicle fan

a) Connection for control unit
b) Water circuit change-over: Relay closes (makes contact) at 68 °C and opens (breaks contact) at 63 °C water temperature (with temperature drop 58 °C / 45 °C)
c) Heater connection

<table>
<thead>
<tr>
<th>PIN No.</th>
<th>Connection</th>
<th>Lead cross-section mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Metering pump</td>
<td>1.5</td>
</tr>
<tr>
<td>B1</td>
<td>Solenoid valve, optional</td>
<td>1.0</td>
</tr>
<tr>
<td>C1</td>
<td>Blower relay</td>
<td>1.0</td>
</tr>
<tr>
<td>A2</td>
<td>Terminal 31</td>
<td>4.0</td>
</tr>
<tr>
<td>B2</td>
<td>Diagnosis (OEM)</td>
<td>1.0</td>
</tr>
<tr>
<td>C2</td>
<td>unused</td>
<td>–</td>
</tr>
<tr>
<td>A3</td>
<td>Terminal 30</td>
<td>4.0</td>
</tr>
<tr>
<td>B3</td>
<td>unused</td>
<td>–</td>
</tr>
<tr>
<td>C3</td>
<td>Temperature drop</td>
<td>1.0</td>
</tr>
<tr>
<td>A4</td>
<td>Vext.</td>
<td>1.5</td>
</tr>
<tr>
<td>B4</td>
<td>Diagnosis (HELJED)</td>
<td>1.0</td>
</tr>
<tr>
<td>C4</td>
<td>Heater ON</td>
<td>1.0</td>
</tr>
</tbody>
</table>

d) Temperature drop (with positive signal)

e) Connect the leads in the control unit’s connector

x) Disconnect cable

a2) Diagnosis

a3) Switch-on signal S+
a4) Positive supply, +30
a5) Negative supply, –31

a6) (+) Trigger battery isolating switch
 (Diode: Order No. 208 00 012)

Connectors and bush housings are shown from the cable inlet side.

Please note!

Note on the switch-on signal S+:

- in EasyStart R+ / R / T control units
 - Connect 0.75² bl/ws lead in connector B2, chamber B4
- In all other control units
 - Connect 1² ge lead in connector B2, chamber B4
- See page 42 for circuit diagram.

Cable colours

<table>
<thead>
<tr>
<th>Colour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rt</td>
<td>red</td>
</tr>
<tr>
<td>bl</td>
<td>blue</td>
</tr>
<tr>
<td>ws</td>
<td>white</td>
</tr>
<tr>
<td>sw</td>
<td>black</td>
</tr>
<tr>
<td>gn</td>
<td>green</td>
</tr>
<tr>
<td>gr</td>
<td>grey</td>
</tr>
<tr>
<td>ge</td>
<td>yellow</td>
</tr>
<tr>
<td>vi</td>
<td>violet</td>
</tr>
</tbody>
</table>

www.butlertechnik.com
Circuit diagram

Circuit diagram: HYDRONIC M-II, 12 volt / 24 volt, ADR

Visit www.butlertechnik.com for more technical information and downloads.
6 Circuit diagram

Parts list for circuit diagram: HYDRONIC M-II, 12 volt / 24 volt, ADR

1. Burner engine
1.1 Glow plug 1
1.2 Glow plug 2
1.5 Overheating sensor
1.12 Flame sensor
1.13 Temperature sensor
2.1 Control box
2.2 Metering pump
2.5.7 Relay, vehicle fan
2.5.18 Relay, water circuit switch over – to be installed by the customer if necessary
2.7 Main fuse
2.7.1 Fuse, actuation 5 A
2.7.5 Fuse, vehicle fan 25 A
2.12 Water pump
5.1 Battery
5.2.1 Main battery switch
5.2.2 Battery disconnector
5.10 Vehicle fan

- a) Connection for control unit
- b) In ADR D+ (generator)
- c) In ADR HA+ (auxiliary drive / power take-off) positive wiring
- d) Water circuit change-over: Relay closes (makes contact) at 68 °C and opens (breaks contact) at 63 °C water temperature (with temperature drop 58 °C / 45 °C)
- e) Heater connection

<table>
<thead>
<tr>
<th>PIN No.</th>
<th>Connection</th>
<th>Lead cross-section mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Metering pump</td>
<td>1.5</td>
</tr>
<tr>
<td>B1</td>
<td>Solenoid valve, optional</td>
<td>1.0</td>
</tr>
<tr>
<td>C1</td>
<td>Blower relay</td>
<td>1.0</td>
</tr>
<tr>
<td>A2</td>
<td>Terminal 31</td>
<td>4.0</td>
</tr>
<tr>
<td>B2</td>
<td>Diagnosis (OEM)</td>
<td>1.0</td>
</tr>
<tr>
<td>C2</td>
<td>D+</td>
<td>–</td>
</tr>
<tr>
<td>A3</td>
<td>Terminal 30</td>
<td>4.0</td>
</tr>
<tr>
<td>B3</td>
<td>TRS signal (ACR)</td>
<td>1.0</td>
</tr>
<tr>
<td>C3</td>
<td>Temperature drop</td>
<td>1.0</td>
</tr>
<tr>
<td>A4</td>
<td>Vext.</td>
<td>1.5</td>
</tr>
<tr>
<td>B4</td>
<td>Diagnosis (HELJED)</td>
<td>1.0</td>
</tr>
<tr>
<td>C4</td>
<td>Heater ON</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- f) Temperature drop (with positive signal)
- g) If only one switching element is used for Item 5.2.1 and 5.2.2, it is important to ensure that on activating the battery disconnecting switch (EMERGENCY OFF function in ADR), the switch always breaks contact (opens) immediately (regardless of the heater condition) and all the heater’s electric circuits are disconnected from the battery.
- h) Connect the leads in the control unit’s connector
- x) Disconnect cable

a1) ADR feedback
a2) Diagnosis
a3) Switch-on signal S+
a4) Positive supply, +30
a5) Negative supply, −31
a6) (+) Trigger battery isolating switch
(Diode: Order No. 208 00 012)

Connectors and bush housings are shown from the cable inlet side.

Please note!

Note on the switch-on signal S+:
- in EasyStart R+ / R / T control units
 - Connect 0.75² bl/ws lead in connector B2, chamber B4
- in all other control units
 - Connect 1² ge lead in connector B2, chamber B4
- See page 44 for circuit diagram.

Cable colours
- rt = red
- bl = blue
- ws = white
- sw = black
- gn = green
- gr = grey
- ge = yellow
- vi = violet

Visit www.butlertechnik.com for more technical information and downloads.
Parts list for circuit diagrams, control units:

EasyStart R+ / R / T and EasyStart T – ADR

2.15.1 Temperature sensor (room temperature)
 (included in scope of supply for EasyStart R+,
 optional for EasyStart R and EasyStart T)
2.15.9 Temperature sensor (outside temperature)

3.1.7 *ON / OFF* button
3.1.16 Radio remote control button

3.2.15 EasyStart T timer

3.3.9 Radio remote control, EasyStart R (stationary unit)
3.3.10 Radio remote control, EasyStart R+ (stationary unit)

3.6.1 Adapter cable

3.8.3 Antenna

c) Terminal 58 (lighting)
e) Connection, EasyStart T timer
g) External *ON / OFF* button (optional)
x) ADR jumper

- Insulate unused cable ends.
- Connectors and bush housings are shown from the cable inlet side.

Cable colours

rt = red
bl = blue
ws = white
sw = black
gn = green
gr = grey
ge = yellow
vi = violet

Please note!

- EasyStart R+ circuit diagram see page 47
- EasyStart R circuit diagram see page 48
- EasyStart T circuit diagram see page 49
- EasyStart T – ADR circuit diagram see page 50
Circuit diagram for EasyStart R+ control unit

Visit www.butlertechnik.com for more technical information and downloads.
Circuit diagram for EasyStart T – ADR control unit

Visit www.butlertechnik.com for more technical information and downloads.
Certifications

The high quality of Eberspächer products is the key to our success. To guarantee this quality, we have organised all work processes in the company along the lines of quality management (QM). Even so, we still pursue a large number of activities for continuous improvement of product quality in order to keep pace with the similarly constantly growing requirements made by our customers. All the steps necessary for quality assurance are stipulated in international standards. This quality is to be considered in a total sense. It affects products, procedures and customer / supplier relationships. Officially approved public experts assess the system and the corresponding certification company awards a certificate. Eberspächer has already qualified for the following standards:

- Environmental management system in accordance with DIN EN ISO 14001:1996

Disposal

Disposal of materials
Old devices, defect components and packaging material can all be separated and sorted into pure-grade factions so that all parts can be disposed of as required in an environment-friendly manner recycled where applicable. Electric motors, control boxes and sensors (e.g. temperature sensors) are deemed to be "electronic scrap".

Dismantling the heater
The heater is dismantled according to the repair stages in the current troubleshooting / repair instructions.

Packaging
The packaging of the heater can be kept in case it has to be sent back.

EC Declaration of Conformity

With regard to the following products

Heater type HYDRONIC M-II

we herewith confirm that it conforms with the prime safety requirements stipulated in the directives of the EU Council for harmonisation of the legal regulations of the member states with regard to electromagnetic compatibility (89 / 336 / EEC). This declaration applies to all heaters produced according to the production drawings HYDRONIC M-II – which are an integral part of this declaration.

The following standards / directives have been used to assess the product with regard to electromagnetic compatibility:

- EN 50081 – 1 Basic form interference emission
- EN 50082 – 1 Basic form of interference immunity

Visit www.butlertechnik.com for more technical information and downloads.
<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>Champion S. A. Av. Cordoba 2756 al 58 RA - 1187 Buenos Aires</td>
<td>Tel. 0054 / 1 - 962 16 21</td>
</tr>
<tr>
<td></td>
<td>Fax. 0054 / 1 - 962 16 27</td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>Hesysco Group OÜ Lüli 1 EE - 10112 Tallinn</td>
<td>Tel. 00372 / 38 48 890/891</td>
</tr>
<tr>
<td></td>
<td>Fax. 00372 / 38 48 892</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>Wihuri Oy Autola Manttaaltie 9 SF - 01510 Vantaa 51</td>
<td>Tel. 0035 / 89 - 82 58 51</td>
</tr>
<tr>
<td></td>
<td>Fax. 0035 / 89 - 82 58 52 07</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>Hyundai Millate 2 Cha, A-405</td>
<td>Tel. +82 (31) 932-34 11 / 12</td>
</tr>
<tr>
<td></td>
<td>Fax. +82 (31) 932-34 16</td>
<td></td>
</tr>
<tr>
<td>Latvia</td>
<td>Trans Baltic Trading Corporation Maskavas iela 449</td>
<td>Tel. 00371 / 7-26 63 23</td>
</tr>
<tr>
<td></td>
<td>Fax. 00371 / 7-18 79 67</td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td>UAB Leopolis Paneriu 51</td>
<td>Tel. 0037-052-33 04 57</td>
</tr>
<tr>
<td></td>
<td>Fax. 0037-052-13 35 37</td>
<td></td>
</tr>
<tr>
<td>People's Republic of China</td>
<td>Eberspaecher Automotive Technology (Beijing) Co., Ltd. B1-1 Xincheng Industrial Park Kechuang Street No. 2, BDA Beijing 100023 People's Republic of China Tel. 0086 10 6789 2686 Fax. 0086 10 6789 2636</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>MARCONI HELLAS S. A. GR 143 43 N. Halkidona Athen</td>
<td>Tel. 0030 / 210 25 13 500</td>
</tr>
<tr>
<td></td>
<td>Fax. 0030 / 210 25 28 854</td>
<td></td>
</tr>
<tr>
<td>Great Britain</td>
<td>Eberspächer UK Ltd. Headlands Business Park Salisbury Road, Ringwood GB - Hampshire BH 243 PB Tel. 0044 / 1425 - 48 01 51 Fax. 0044 / 1425 - 48 01 52</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>Eberspächer S.r.l. Via del Canneto 45 I - 25010 Borgosatollo (BS) Tel. 0039 / 030 25076-1 Fax. 0039 / 030 2500307</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>White House Co., Ltd. 10-4 Obata-Miyakoshi Moriya-Ku Nagoya 463-0052 JP</td>
<td>Tel. 0801 / 5 27 76 38 11</td>
</tr>
<tr>
<td></td>
<td>Fax. 0081 / 5 27 76 38 55</td>
<td></td>
</tr>
<tr>
<td>People's Republic of China</td>
<td>Eberspaecher Automotive Technology (Beijing) Co., Ltd. B1-1 Xincheng Industrial Park Kechuang Street No. 2, BDA Beijing 100023 People's Republic of China Tel. 0086 10 6789 2686 Fax. 0086 10 6789 2636</td>
<td></td>
</tr>
<tr>
<td>People's Republic of China</td>
<td>Eberspaecher Automotive Technology (Beijing) Co., Ltd. B1-1 Xincheng Industrial Park Kechuang Street No. 2, BDA Beijing 100023 People's Republic of China Tel. 0086 10 6789 2686 Fax. 0086 10 6789 2636</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>Eberspächer Norge Trollåsveien 34 N 1414 Trollåsen</td>
<td>Tel. 0047 / 66 82 30 50</td>
</tr>
<tr>
<td></td>
<td>Fax. 0047 / 66 82 30 58</td>
<td></td>
</tr>
</tbody>
</table>

Visit www.butlertechnik.com for more technical information and downloads.
Service

Representatives abroad

Austria
Eberspächer Ges.m.b.H.
IZ NÖ-Süd 2, Hondastraße 2, Obj. M47
A - 2351 Wiener Neustadt
Tel. 0043 / (0) 2236 677 144-0
Fax. 0043 / (0) 2236 677 144-42

Spain – Portugal
Pedro Sanz Clima S.L.
Avda. Ingeniero Torres Querendo, 6
E - 28022 Madrid
Tel. 00349 / 1-761 38 30
Fax. 00349 / 1-329 42 31

Poland
Eberspächer Sp.z.o.o
Wysogotowo K. Poznania
ul. Okreznà 17
PL-62081 Przezmierowo
Tel. 0048 / 61-816 18 50
Fax. 0048 / 61-816 18 60

Czech Republic
Eberspächer Praha s r.o.
AREÁL ZÁLESÍ
Pod Višňovkou 29
CZ - 140 00 Praha 4 – Krč
Tel. 00420 / 234 035 800
Fax. 00420 / 234 035 810 und 820

Russia
JSC OTEM
Verhnya Krasnoselskaya ulitsa 2
RUS - 107140 Moskau
Tel. 007 / 49 56 45 59 79
Fax. 007 / 49 56 47 13 24

Turkey
ASCA Otomotiv Ltd. Sti.
Ikitelli Organize Sanayi Bölgesi
Dolapdere Sanayi Sitesi 1. Ada No. 38
TR - 34760 Ikitelli / Istanbul
Tel. 0090 212 - 549 86 31
Fax. 0090 212 - 549 33 47

Sweden
Eberspächer AB
Box 2103
S - 12823 Skarpnäck
Tel. 0046 / 86 83 11 34
Fax. 0046 / 87 24 90 40

Switzerland
Technomag AG
Fischermattelistr. 6
Ch - 3000 Bern - 5
Tel. 0041 - 31 379 81 21
Fax. 0041 - 31 379 82 50

Slovak Republic
Molpir, spol.s.r.o.
Hrachova 30
SK-821 05 Bratislava
Tel. 00421 / 243 19 12 18
Fax. 00421 / 243 19 12 20

Ukraine
Geruk+K
ul. Dobrovolskogo 3/4
UA - 18006 Tscherkassy
Tel. 0038 / 0472 310800
Fax. 0038 / 0472 310801

Slovenia
Eberspaecher Gesellschaft m. b. H.
Podružnica SLO
Celovška cesta 228
1000 Ljubljana
Tel. 00386 / 1 518 70 52
Fax. 00386 / 1 518 70 53

Belarus
Belvneshinvest
Per. 1-yl Izmajlowskij, 51/2
BY - 220 131 Minsk
Tel. 00375 / 172 371 437
Fax. 00375 / 172 371 716

Visit www.butlertechnik.com for more technical information and downloads.

Dated 10,2007
List of keywords A – Z

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident prevention</td>
<td>4</td>
</tr>
<tr>
<td>Adapter cable</td>
<td>13, 14, 16</td>
</tr>
<tr>
<td>ADR / ADR99</td>
<td>7</td>
</tr>
<tr>
<td>AMP release tool</td>
<td>21</td>
</tr>
<tr>
<td>Assembly drawing</td>
<td>22</td>
</tr>
<tr>
<td>Cancel the control box lock</td>
<td>13, 15, 16, 17</td>
</tr>
<tr>
<td>Certification</td>
<td>51</td>
</tr>
<tr>
<td>Check flame sensor</td>
<td>38</td>
</tr>
<tr>
<td>Check overheating sensor</td>
<td>37</td>
</tr>
<tr>
<td>Check temperature sensor</td>
<td>37</td>
</tr>
<tr>
<td>Circuit diagrams</td>
<td>42, 44, 47 – 50</td>
</tr>
<tr>
<td>Combustion air blower unit</td>
<td>23 – 34</td>
</tr>
<tr>
<td>Combustion chamber</td>
<td>22, 23, 27 – 29</td>
</tr>
<tr>
<td>Contents</td>
<td>2, 3</td>
</tr>
<tr>
<td>Control and safety devices</td>
<td>7</td>
</tr>
<tr>
<td>Control box / blower unit</td>
<td>24 – 34</td>
</tr>
<tr>
<td>Cutaway view</td>
<td>5</td>
</tr>
<tr>
<td>Declaration of conformity</td>
<td>51</td>
</tr>
<tr>
<td>Delivery curve of water pump</td>
<td>11</td>
</tr>
<tr>
<td>Description of functions</td>
<td>6</td>
</tr>
<tr>
<td>Diesel – commercially available</td>
<td>8 – 10</td>
</tr>
<tr>
<td>Disposal</td>
<td>51</td>
</tr>
<tr>
<td>EasyStart R+ radio remote control</td>
<td>13, 17</td>
</tr>
<tr>
<td>EC Declaration of Conformity</td>
<td>51</td>
</tr>
<tr>
<td>EDITH diagnostics tool</td>
<td>13, 16</td>
</tr>
<tr>
<td>Electrical power consumption</td>
<td>8 – 10</td>
</tr>
<tr>
<td>EMC directive</td>
<td>55</td>
</tr>
<tr>
<td>Emergency off</td>
<td>7</td>
</tr>
<tr>
<td>Emergency shutdown</td>
<td>7</td>
</tr>
<tr>
<td>Environment</td>
<td>51</td>
</tr>
<tr>
<td>FAME</td>
<td>8, 55</td>
</tr>
<tr>
<td>Fault code display</td>
<td>18 – 20</td>
</tr>
<tr>
<td>Fault description</td>
<td>18 – 20</td>
</tr>
<tr>
<td>Fault diagnosis</td>
<td>13 – 17</td>
</tr>
<tr>
<td>Flame sensor</td>
<td>23, 26, 27, 30</td>
</tr>
<tr>
<td>Forced shutdown</td>
<td>7</td>
</tr>
<tr>
<td>Foreword</td>
<td>4</td>
</tr>
<tr>
<td>Fuel</td>
<td>8 – 10</td>
</tr>
<tr>
<td>Function</td>
<td>5 – 7</td>
</tr>
<tr>
<td>Glow plug</td>
<td>23, 26, 27, 29, 31</td>
</tr>
<tr>
<td>Heat exchanger</td>
<td>23</td>
</tr>
<tr>
<td>Heating mode</td>
<td>6</td>
</tr>
<tr>
<td>Ignition air drillhole</td>
<td>35</td>
</tr>
<tr>
<td>Individual parts list</td>
<td>23</td>
</tr>
<tr>
<td>Introduction</td>
<td>2 – 4</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>55</td>
</tr>
<tr>
<td>Lists</td>
<td>54, 55</td>
</tr>
<tr>
<td>Locking the control box</td>
<td>7</td>
</tr>
<tr>
<td>Measure fuel quantity</td>
<td>40</td>
</tr>
<tr>
<td>Minimum water flow rate</td>
<td>8 – 10</td>
</tr>
<tr>
<td>Overheating sensor</td>
<td>23, 24, 33, 37</td>
</tr>
<tr>
<td>Parts list circuit diagram</td>
<td>43, 45, 46</td>
</tr>
<tr>
<td>Picture symbols</td>
<td>4</td>
</tr>
<tr>
<td>Power consumption</td>
<td>8 – 10</td>
</tr>
<tr>
<td>Product information</td>
<td>8 – 11</td>
</tr>
<tr>
<td>Quality management</td>
<td>51</td>
</tr>
<tr>
<td>Quality</td>
<td>51</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>8 – 10</td>
</tr>
<tr>
<td>Remedial action</td>
<td>18 – 20</td>
</tr>
<tr>
<td>Remove / install glow plug</td>
<td>35</td>
</tr>
<tr>
<td>Repair instructions</td>
<td>21 – 40</td>
</tr>
<tr>
<td>Representatives abroad</td>
<td>52, 53</td>
</tr>
<tr>
<td>Rewiring cable harness connector</td>
<td>41</td>
</tr>
<tr>
<td>Service</td>
<td>51 – 53</td>
</tr>
<tr>
<td>Switching on</td>
<td>6</td>
</tr>
<tr>
<td>Technical data</td>
<td>8 – 11</td>
</tr>
<tr>
<td>Temperature sensor</td>
<td>23, 24, 33, 37</td>
</tr>
<tr>
<td>Testing equipment</td>
<td>13</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>12 – 20</td>
</tr>
<tr>
<td>Water pump</td>
<td>23, 25, 33, 39</td>
</tr>
<tr>
<td>Wiring</td>
<td>41</td>
</tr>
</tbody>
</table>
Lists

List of abbreviations

ADR
European agreement about the international transport of dangerous goods on the road.

ADR99
Dangerous goods regulations for France.

EC type-approval
Permit awarded by the Federal Vehicle Office for the production of a heater for installation in motorised vehicles.

EMC directive
Electromagnetic compatibility.

JE-partner
J. Eberspächer partner.

FAME (biodiesel)
FAME for diesel engines according to DIN EN 14 214